Let $f\,:\,R \to R$ be a function such that $f\left( x \right) = {x^3} + {x^2}f'\left( 1 \right) + xf''\left( 2 \right) + f'''\left( 3 \right)$, $x \in R$. Then $f(2)$ equals

  • [JEE MAIN 2019]
  • A

    $-4$

  • B

    $30$

  • C

    $-2$

  • D

    $8$

Similar Questions

Let $f : R \rightarrow R$ be a continuous function such that $f(3 x)-f(x)=x$. If $f(8)=7$, then $f(14)$ is equal to.

  • [JEE MAIN 2022]

Let $S=\{1,2,3,4,5,6\}$. Then the number of oneone functions $f: S \rightarrow P(S)$, where $P(S)$ denote the power set of $S$, such that $f(n) \subset f(m)$ where $n < m$ is $..................$

  • [JEE MAIN 2023]

If $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 +  .... + \infty } } } } \right)$ then 

Least integer in the range of $f(x)$=$\sqrt {(x + 4)(1 - x)}  - {\log _2}x$ is

If function $f(x) = \frac{1}{2} - \tan \left( {\frac{{\pi x}}{2}} \right)$; $( - 1 < x < 1)$ and $g(x) = \sqrt {3 + 4x - 4{x^2}} $, then the domain of $gof$ is

  • [IIT 1990]